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Abstract

We have studied theoretically the photonic bands in a periodic dielectric–metallic superlattice. In the calculations th
absorption in the metallic layers was taken into account using the well-knownDrude model for the dielectric function,
ε(ω) = 1 − ω2

p/ω(ω + iγ ). Due to the absorption in the metallic films, the Bloch vector becomes complex for all freque
and the waves are evanescent. The photonic band structure is strongly modified as compared to the band struc
nonabsorbent superlattice, mainly in the region of low frequenciesω < ωp where bands of odd behavior appear. We also h
studied the absorption, reflection and transmission spectra of light incident on a finite superlattice. The spectra show
complex bands, with complex wave vector and real frequency, are an appropriate resource to describe the optical pro
periodic absorbent structures.
 2004 Elsevier B.V. All rights reserved.
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During the last decade we have witnessed the de
opment of new physical theories and numerical me
ods to describe the propagation of electromagn
waves in periodic nonabsorbent composites [1–3]
these photonic crystals,the waves undergo Brag
diffraction due to the periodicity of the index o
refraction, and the solutions of the wave equat
that satisfy the fundamental Bloch condition det
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mines the eigenstates or the band structure of the
tems. A band structure shows how the electrom
netic waves are transmitted as a function of freque
A band structure of a photonic system often conta
various so-called band gaps where the electromagn
propagation is forbidden. In between the band g
there are transmission bands where electromagn
transmission is allowed.

In the case where all the components in the sys
are of nonabsorbent dielectric materials the Blo
vector is a pure real number in the frequency rang
the transmission bands within the respective Brillo
.

http://www.elsevier.com/locate/pla


274 D. Soto-Puebla et al. / Physics Letters A 326 (2004) 273–280

mes
he
g

nic
te-
or

rma
the
ne
in

scen
tem

-
ab-
on-
lex
the
–7]

ed
of
ex-

pe-
en
nd
nic
un-
2D

of
llic
ve
uch
tion

nite
the

d the
gh
ke

low

ge,
ds
the

lex
ion
veral

for
ity
the

e
n
nd
ey

hat

h

to
tric

on
i-

ison
-
cy
e

at
w

he
t

zone, while in the band gaps the Bloch vector beco
a complex number with its real part remaining in t
limit of the Brillouin zone and imaginary part varyin
as a function of the frequency.

However, if one of the components in the photo
system is metallic the strong absorption in this ma
rial modifies the solutions of the wave equation. F
us it is not clear if the termband structurepreserves
because the absorption breaks the concept of no
mode. There exist, however, reports that suggest
way to proceed with this type of systems. On the o
hand, one can find solutions that extend infinitely
space with amplitude decaying in time (real Bloch
vectorK and complex frequencyω = ωR + iωI ). On
the other hand, the solutions can represent evane
waves that decay as they penetrate into the sys
(complex wave vectorK = KR + iKI and real fre-
quencyω). For the first case, calculations with com
plex frequency have shown an important role of the
sorption in superlattices. Apparently it produces c
siderable enlarge of the band gaps [4]. With comp
wave vector, the second case, the attenuation of
modes has been discussed by several authors [5
Particularly in Ref. [5] different methods were us
to obtain the absorption coefficient and the lifetime
the modes of propagation. The studies have been
tended to systems of two- and three-dimensional
riodicity (2D and 3D photonic crystals). It has be
shown that small metallic inclusions in diamond a
zinc-blende structures affect dramatically the photo
bands [8]. Also, new photonic states were reported
der the presence of weak dissipation in systems of
periodicity [9].

In this Letter we present an alternative study
the complex band structure of a dielectric–meta
superlattice within the scheme of complex Bloch wa
vector and real frequency. We shall establish that s
a band structure describes properly the propaga
and attenuation of the electromagnetic waves in fi
absorbing systems. With this purpose we present
correspondence between the frequency bands an
reflection and transmission spectra for thick enou
samples. In describing our solutions we shall ma
particular emphasis in the region of frequencies be
the plasma frequencyωp of the constitutive metal. We
have found bands of odd behavior, to our knowled
not previously reported. Calculation of complex ban
in absorbing systems is not very popular due to
l

t

.

numerical complications introduced by the comp
refraction index. However, the role of the absorpt
in transmission spectra has been discussed by se
authors [10–12].

Let us begin presenting the basic formulas used
the numerical study. For structures of 1D periodic
the well-known basic equation that describes
electromagnetic modes along the lattice axis is

cos(Kd) = cos

(
n1

ω

c
a

)
cos

(
n2

ω

c
b

)

− 1

2

[
n2

n1
+ n1

n2

]

(1)× sin

(
n1

ω

c
a

)
sin

(
n2

ω

c
b

)
,

whereK is the Bloch vector,d = a + b is the period
and n1 and n2 are the indices of refraction of th
layers of thicknessa andb, respectively. Eq. (1) ca
be obtained via the transfer-matrix method [13,14] a
is equivalent to the well established Kronig–Penn
relation in the electronic problem. We assume t
indexn1 is a complex functionn1 = nR(ω) + inI(ω)

which represents a metal, and the indexn2 a real
number. Inputtingn1 andn2 into Eq. (1), it takes the
form

(2)cos(Kd) = f1 + if2,

with f1 and f2 real functions. Thus, solutions wit
complexK can be numerically obtained.

The absorption in the metallic layers is taken in
account employing the Drude model for the dielec
constant

(3)ε(ω) = 1− ω2
p

ω(ω + iγ )
,

whereωp is the plasma frequency of the conducti
electrons andγ the frequency of the electronic coll
sions. The corresponding index of refractionn1 = √

ε

has real and imaginary components. For compar
we plot in Fig. 1 the index with and without ab
sorption for a metallic material of plasma frequen
ωp = 10 eV. In the case of absorption, for which w
have chosenγ = 0.1ωp, one can see from Fig. 1 th
the real part is strongly distorted in the regime of lo
frequencies.

It is constructive to analyze the behavior of t
functionsf1 and f2 involved in Eq. (2) (we are no
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Fig. 1. Dependence of theindex of refractionn on the absorption
coefficientγ . Through all of this Letter the plasma frequency h
the valueωp = 10 eV (∼ 15× 1015 s−1).

showing the form of these functions because of
simplicity of the algebra involved to obtain them). W
have chosen for the superlattice the relationa/b = 0.1,
with d = 100 nm. The metal is the same of Fig.
the dielectric layer is air,n2 = 1. Fig. 2 shows the
functions for the particular caseγ = 0. As is expected
f2 = 0 ∀ω and f1 oscillates defining the frequenc
regions in which the argumentKd takes real value
(the regions where|f1| � 1). It can be seen that th
first and second allowed bands are defined by
intervals 0.29 � ω/ωp � 0.62 and 0.75 � ω/ωp �
1.24, respectively.

When absorption is included the functionsf1 and
f2 are strongly modified, particularly in the region
low frequenciesω � ωp, as is shown in Fig. 3. In
this region, determined by the damping constantγ , the
filling fraction and the period length, the functionsf1
andf2 change from oscillatory and tend to the lim
values one and zero, respectively. (The values of
Fig. 2. The functionsf1 and f2 associated to a nonabsorbe
superlattice.

Fig. 3. The functionsf1 and f2 associated to an absorbe
superlattice. We plot the curves for four values of the absorp
parameterγ .

limits differ from those presented in Ref. [5] whe
the real part satisfiesf1(ω → 0) < 1. Consequently
our solutions do not coincide with the results sho
in such article. As we shall see, a careful analyti
and numerical treatment of Eq. (1) leads to comp
solutions whose frequency structuredoes not presen
band gaps, as was reported in Ref. [5].) Anot



276 D. Soto-Puebla et al. / Physics Letters A 326 (2004) 273–280

uted
of
w
allic

sses
of
t

er

2).
nd
he
och
x to
est

est

p a

ior
ry

he
s of
des

only
ary

a
re-

fect
5].
om
ring
).

sma
ide
he
ding

sfy
low

d the
er,
ine

g
cies

the

e

on-
and
op-
ite
so-

-
s

ite
ene-
l os-
k

Fig. 4. The photonic band structure. (a) The system is constit
by alternated air and dispersivenonabsorbent layers, the latter
dielectric functionε(ω) = 1− ω2

p/ω2. (b) The same as (a) but no
the dispersive layers include small absorption effects. The met
filling fraction is f = 0.1 and the cell size isd = 100 nm.

particularity is that the curves off1 for different values
of γ cross just at the frequenciesω2 andω4, the upper
edges of the first and second bands. In the cro
f1 = ±1. A similar behavior occurs to the curves
f2, but at the cross pointsf2 = 0. It means that a
these particular frequencies,ω2 andω4, the dispersion
relationsω(K) of the waves in the superlattice, eith
with or without absorption, coincide.

Now we present the numerical solutions of Eq. (
Fig. 4 shows the effect of dissipation on the ba
structure. Withγ = 0 (see Fig. 4a) the curves have t
expected form. As the frequency increases the Bl
vector that defines the modes changes from comple
real and from real to complex, and so on. The high
imaginary vector in each gap coincides with the
corresponding mid-frequency gap except in the low
gap. Fig. 4b shows that the small perturbationγ =
0.001ωp already produces a noticeable modification
of the structure at low frequencies. In the first ga
small real wave vector arises with an odd behav
in the region of low frequencies and the imagina
component deforms penetrating with finite amplitude
into the region of the first allowed band. Thus, t
first allowed band no longer represents pure mode
propagation at least at the lower edge where the mo
are now attenuated. In the second and third gaps
a tiny real wave vector appears while the imagin
component remains practically unchanged.

With higher γ the band structure undergoes
strong deformation as is shown in Fig. 5 where we p
sent the bands forγ = {0.01,0.1}ωp. With γ = 0.1ωp,
the curve of real vectors backbends. This type of ef
is well known in physics of surface plasmons [1
Of course that the bands of Fig. 3 do not stem fr
the coupling of surface plasmons (we are conside
propagation only on the direction of periodicity
However, the modes at frequencies below the pla
frequency have fields that decay exponentially ins
each metallic layer, the similar requirement for t
occurrence of surface plasmons. The backben
effect, that appears already forγ = 0.001ωp, results
from the boundary conditions that the fields sati
at each interface dielectric–metal at frequencies be
ωp. Some time ago several authors have discusse
involved physics for single interfaces [16]. Howev
additional study is now required in order to determ
the role played by the periodicity.

Fig. 5 shows that asγ is increased the backbendin
tends to disappear. Note the reader that the frequen
of the upper band edges forγ = 0 (see Fig. 4) remain
as the reflection points of the dispersion curves at
limit of the Brillouin zone whenγ �= 0. The existence
of these fixed points was already predicted from th
analysis of the functionsf1 andf2 above.

Figs. 4 and 5 show that absorption breaks the c
cept of band structure (as a series of allowed
forbidden frequency regions). However, some pr
erties of the electromagnetic waves in a semiinfin
superlattice can be established from the complex
lutions. In the region of the original(γ = 0) lowest
gap, 0� ω/ωp � 0.29, we found that the Bloch vec
tor develops a real componentKR. We also see that a
higherγ lower the imaginary componentKI (seeKI at
the mid frequency of the gap). Thus, in a semiinfin
sample the waves penetrate more (beyond they p
trate in absence of losses) presenting an additiona
cillatory behavior introduced byKR that tends to brea
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Fig. 5. The complex bands as function ofγ . Strong deformation of the curves is observed mainly in the regimeof lower frequencies.
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the standing wave conditions of the original gap. L
metallic absorption only perturbs the standing wav
a perturbed gap remains—no oscillatory waves are
pected to traverse thick enough finite samples.

Contrarily, in the region of the first original allowe
band 0.29� ω/ωp � 0.62, the conditions for complet
propagation in absence of losses is now perturbed
a semiinfinite sample the oscillatory waves penet
but now due to the presence of absorption they acq
an exponential envelop that decays into the sam
The shorter penetration distanceδ (distance at which
an incident wave decay to 1/e of its value at a surface)
the higher imaginaryKI . Fig. 5 shows that the uppe
band edge is less sensitive to the metallic losses. In
the original upper band edge (withγ = 0) at the zone
border preserves. Similar effect has been also repo
for 2D systems and have to do with the behavior
the standing waves near the gap borders. From
band structure we conclude that in the upper e
of the first band the fields are mostly localized
the dielectric region (the effect of the absorption
almost negligible). At the lower band edge, howev
the fields are localized at the metallic films giving ri
to considerable absorption.

We may give similar description of the compl
bands in regions corresponding to upper forbidden
allowed original bands. Our conclusions are, on
one hand, the metallic absorption affects the stand
wave conditions in the band gaps increasing the w
penetration of an incident wave (the bands develo
real vector component). For a semiinfinite superlat
(or a thick enough superlattice slab) this additio
penetration produces field evanescence due to th
metallic losses (as higher the penetration, higher
probability of absorption of the incident wave). O
the other hand, as is expected, the metallic absorp
adds a decaying behavior to the original oscillat
solutions. In this case the interesting point is
asymmetry of the penetration distanceδ; short at low
frequencies, long at high frequencies, in the sa
allowed band.

Next we present the optical response of a fin
multilayer. The sample, of material parameters
same of the superlattice treated above, is constit
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nt
Fig. 6. R, T and A spectra corresponding to a finitemultilayer of 11 cells. These functions satisfy R+ T + A = 1. The shaded regions represe
allowed bands of the nonabsorbent system. Absorption is higher at the lower band edges.
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by 11 cells (22 layers) and the incident and
transmitted media are air. This is a thick enou
sample for which the reflection(R), transmission(T)

and the multilayer absorption(A) of the normally
incident wave are expectedto be in agreement with th
complex photonic bands. The ordinary transfer ma
methods were employed in these calculations.

Small loss in the metallic layers distorts the we
known R, T and A spectra of a nonabsorbent mu
layer (not shown here). Withγ = 0.01ωp Fig. 6 shows
that the first gap remains for T even when R< 1. Fi-
nite absorption appears increasing as the frequenc
proaches to the first band. Note that the three fu
tions R, T and A do not oscillate in this region. T
waves are stationary with some degree of pertu
tion that causes wave absorption. The high absorp
at the gap edge is in agreement with the large imag
inary vector component observed in the band str
ture.

Then, inside the first allowed band we observe o
nary Fabry–Perot oscillations (the main characteri
of oscillatory modes in finite systems). The reflectiv
appears symmetric with respect to the band edges
contrarily, the transmittance is low at the lower ba
edge and high at the higher band edge. The profile
-

,

R and T indicate that T is more sensitive to the sup
lattice absorption, which is higher at the lower ba
edge (see Fig. 6). Note that peaks of A coincide w
the peaks of T.

On the other hand, the second gap seems alm
the same of the nonabsorbent case, only with
small increasing absorption. In the third gap R a
T show already the effects of finite structure with
additional small absorption. Fig. 6 also shows t
the superlattice absorption is strongly reduced in
second and third allowed bands.

The results presented in Fig. 6 are in compl
correspondence with the complex bands of Fig.
A small real wave vector component in the ga
perturbs the standing wave conditions giving r
to finite absorption; then, a small imaginary wa
vector component in the allowed bands means
waves decay by absorption. It is very important
remark that the spectra shown in Fig. 6 represe
small modification of the spectra corresponding to
nonabsorbent structure. For the wave transmittance
band gaps are essentially unaltered.

Now we refer to Fig. 7. As can be seen w
γ = 0.1ωp the R, T and A spectra are strong
perturbed, particularly in the regionω < ωp. The
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ture of the
Fig. 7. The same as Fig. 6 but realistic the metallic absorption. The slope variation of A in the first gap reflects the backbending struc
bands. Fabry–Perot oscillations (transmission) begin at a frequency inside the first gap. The first transmission gap is enlarged.
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backbending effect of the bands gives to R and
variable slope inside the first gap. We also obse
an enlarge of the lowest transmission gap. Note
transmission begins at a frequency inside the orig
allowed band almost coinciding with the absorpti
maximum. At such a frequency A(R) modifies its
behavior from monotonically increasing (decreasi
to an oscillatory one—the Fabry–Perot oscillatio
As higher the metallic absorption we found th
transmission begins at higher frequencies.

In spite of the T asymmetry in the allowed band
Fig. 7 shows that realistic metallic absorption leav
the structures of R and T with some remnant
the original (without absorption) band structure. T
frequencies at which the second and third gaps b
are practically unaltered.

We know that R, T and A depend on the thickne
D of the superlattice slab. With help of the compl
bands one may estimateD in order to obtain a
desirable transmission. For example, at the cente
the first band(ω/ωp = 0.45) with γ = 0.1ωp we
found from Fig. 5 thatKI = 9.7 × 10−4 nm−1. Thus,
for our sample of eleven cells at such frequency
have exp(−KID) ∼ exp(−1). It means thatD ∼ δ and
transmittance is expected (as effectively it occurs.
Fig. 7). However at the lower edge(ω/ωp = 0.29),
KI = 4.7×10−3 nm−1 and exp(−KID) ∼ exp(−5). It
corresponds to a very low transmission not apprecia
in the scale of Fig. 7.

Now we make some final remarks. In treati
the problem of absorption in 2D and 3D photon
crystals with metallic components previous repo
have speculated about new states inside the b
gaps [9]. From our calculations we concluded that
similar states appear in 1D systems. We have fo
that inside the gaps the waves may penetrate m
in presence of absorption but not as an eigenstat
propagation (there exists an imaginary Bloch vec
component that makes the wave evanescent).
the other hand, the complex band structure h
reported leaves diffuse the lower edge of the freque
regions of mainly oscillatory solutions. However, t
upper edge, the point of maximum oscillation,
clearly established at the border of the Brillou
zone. At such points, the imaginary component
the wave vector is minimum; the waves propag
almost without damping. Thus, the complex ban
allows one to know the frequency regions at wh
the higher transmission is expected through fin
samples.
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It is important to say that previous reports of calc
lations in the scheme of complex frequency and r
wave vector have found considerable enlarge of so
photonic gaps due to the presence of absorption
Now, within the scheme of complex wave vector a
real frequency, we cannot speak of an absolute
large of the band gaps. As Fig. 7 shows, appare
the first band gap for T enlarges and the gap edge
etrates into the region of the first allowed band. Ho
ever, this is a relative result because the frequenc
which appreciable transmission begins depends on
number of cells in the sample. As thicker the sa
ple, higher the frequency of threshold for transm
tance. For example, with a multilayer of eleven cells
nite transmission exist only at frequencies higher t
ω ∼ 0.40ωp; with twenty cells this frequency move
to ω ∼ 0.50ωp and, for forty cells transmission begin
at ω ∼ 0.59ωp. It means that for the sample of for
cells the lowest gap is defined by 0 <ω/ωp < 0.59
while for the sample of eleven cells it has the frequ
cies 0< ω/ωp < 0.40. Thus, with respect to a nona
sorbent multilayer, the lowest gap for T is enlarged
the absorption in finite systems. All of this behav
can be inferred from the complex band structure.

We want to remark that the metallic losses ma
complex the Bloch wave vector. It means that
correct description of the wave propagation is given
the two wave vector components, real and imagin
One cannot speak of areal band structureω = ω(KR).
For this reason we believe that the band struc
reported by other authors, particularly in Ref. [5], ne
be reconsidered.

In conclusion, we have presented the comp
bands that describe the electromagnetic wave p
agation in dielectric–metallic superlattices. The lo
mechanisms in the metallic layers modify the we
known structure of allowed and forbidden frequen
ranges of the correspondingnonabsorbentmultilayer.
Due to the presence of a finite imaginary Bloch vecto
component our solutions have physical sense only
finite systems. We found thatthe metallic absorption
perturbs the conditions for stationary waves allow
higher penetration (shorter imaginaryKI ) of the waves
at frequencies of the nonabsorbent multilayer gaps.
The higher penetration is accompanied of higher
sorption. The complex bands define clearly the f
quency regions where highest transmission throug
finite sample is expected.
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