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Abstract

We have studied theoretically éhphotonic bands in a pedic dielectric—-metallic supeattice. In the calculations the
absorption in the metallic laye was taken into account using the well-kno®nude model for the iglectric function,
e(w)=1— a)g/w(a) +iy). Due to the absorption in the metallic films, the Bloch vector becomes complex for all frequencies,
and the waves are evanescent. The photonic band structure is strongly modified as compared to the band structure of the
nonabsorbent superlattice, mainly in the region of low frequencieswp where bands of odd behavior appear. We also have
studied the absorption, reflection and transmission spectra of light incident on a finite superlattice. The spectra show that the
complex bands, with complex wave vector and real frequency, are an appropriate resource to describe the optical properties of
periodic absorbent structures.

0 2004 Elsevier B.V. All rights reserved.

During the last decade we have witnessed the devel- mines the eigenstates or the band structure of the sys-
opment of new physical theories and numerical meth- tems. A band structure shows how the electromag-
ods to describe the propagation of electromagnetic netic waves are transmitted as a function of frequency.
waves in periodic nonabsorbent composites [1-3]. In A band structure of a photonic system often contains
these photonic crystals,the waves undergo Bragg various so-called band gaps where the electromagnetic
diffraction due to the periodicity of the index of propagation is forbidden. In between the band gaps
refraction, and the solutions of the wave equation there are transmission bands where electromagnetic
that satisfy the fundamental Bloch condition deter- transmission is allowed.

In the case where all the components in the system
mspondmg author are of_nonabsorbent dielec'Fric materials the Bloch

E-mail addressdsoto@cajeme.cifus.uson.mx vector is a pure real numper_ in the frequerjcy ra_nge_of
(D. Soto-Puebla). the transmission bands within the respective Brillouin
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zone, while in the band gaps the Bloch vector becomes numerical complications introduced by the complex

a complex number with its real part remaining in the refraction index. However, the role of the absorption
limit of the Brillouin zone and imaginary part varying in transmission spectra has been discussed by several
as a function of the frequency. authors [10-12].

However, if one of the components in the photonic Let us begin presenting the basic formulas used for
system is metallic the strong absorption in this mate- the numerical study. For structures of 1D periodicity
rial modifies the solutions of the wave equation. For the well-known basic equation that describes the
us it is not clear if the ternband structurepreserves  electromagnetic modes along the lattice axis is
because the absorption breaks the concept of normal
mode. There exist, however, reports that suggest thecogKd) = cos<n19a) Co<n28b)
way to proceed with this type of systems. On the one ¢ ¢

hand, one can find solutions that extend infinitely in B }[Q 4 ﬂ}

space with amplitude decig in time (real Bloch 2ln1 no

vector K and complex frequenay = wr + iw). On _ @ _ @

the other hand, the solutions can represent evanescent X S'“(”l—a) S'”(”Zzb)» 1)

waves that decay as they penetrate into the system . . )
(complex wave vectok = Kg + iK; and real fre- ~ WherekK is the Bloch vectord =a +b is th_e period
quencyw). For the first case, calculations with com- @ndni and nz are the indices of refraction of the
plex frequency have shown an important role of the ab- layers of thicknesa andb, respectively. Eq. (1) can
sorption in superlattices. Apparently it produces con- P€ obtained via the transfer-matrix method [13,14] and
siderable enlarge of the band gaps [4]. With complex 'S equivalent to the well established Kronig—Penney
wave vector, the second case, the attenuation of ther€lation in the electronic problem. We assume that
modes has been discussed by several authors [5—7]indexn1 is a complex functiom; = nr(w) + ini(w)
Particularly in Ref. [5] different methods were used Which represents a metal, and the index a real

to obtain the absorption coefficient and the lifetime of NUMber. Inputtingzy andn; into Eq. (1), it takes the
the modes of propagation. The studies have been ex-form

tended to systems of two- and three-dimensional pe- _ .

riodicity (2D and 3D photonic crystals). It has been CotKd) = f1+if2, 2)
shown that small metallic inclusions in diamond and with f1 and f> real functions. Thus, solutions with
zinc-blende structures affect dramatically the photonic complexk can be numerically obtained.

bands [8]. Also, new photonic states were reported un-  The absorption in the metallic layers is taken into
der the presence of weak dissipation in systems of 2D account employing the Drude model for the dielectric

periodicity [9]. constant

In this Letter we present an alternative study of w2
the complex band structure of a dielectric-metallic ¢(w)=1— —> | 3)
superlattice within the scheme of complex Bloch wave o(@+iy)

vector and real frequency. We shall establish that such wherew,, is the plasma frequency of the conduction
a band structure describes properly the propagationelectrons ang’ the frequency of the electronic colli-
and attenuation of the electromagnetic waves in finite sions. The corresponding index of refraction= /¢
absorbing systems. With this purpose we present the has real and imaginary components. For comparison
correspondence between the frequency bands and theve plot in Fig. 1 the index with and without ab-
reflection and transmission spectra for thick enough sorption for a metallic material of plasma frequency
samples. In describing our solutions we shall make wp = 10 eV. In the case of absorption, for which we
particular emphasis in the region of frequencies below have chosery = 0.1wp, one can see from Fig. 1 that
the plasma frequenaeyp of the constitutive metal. We  the real part is strongly distorted in the regime of low
have found bands of odd behavior, to our knowledge, frequencies.

not previously reported. Calculation of complex bands It is constructive to analyze the behavior of the
in absorbing systems is not very popular due to the functions f1 and f> involved in Eq. (2) (we are not
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Fig. 1. Dependence of thedex of refractionnz on the absorption
coefficienty. Through all of this Letter the plasma frequency has
the valuewp = 10 eV (~ 15 x 101%™,

showing the form of these functions because of the
simplicity of the algebra involved to obtain them). We
have chosen for the superlattice the relatigh = 0.1,
with d = 100 nm. The metal is the same of Fig. 1;
the dielectric layer is airp> = 1. Fig. 2 shows the
functions for the particular cage= 0. As is expected

f2 =0 Vo and f1 oscillates defining the frequency
regions in which the argumerkd takes real values
(the regions wher¢fi| < 1). It can be seen that the
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Fig. 2. The functionsf1; and f> associated to a nonabsorbent
superlattice.
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Fig. 3. The functionsf; and f» associated to an absorbent

first and second allowed bands are defined by the superlattice. We plot the curves for four values of the absorption

intervals 029 < w/wp < 0.62 and 075 < w/wp <
1.24, respectively.

When absorption is included the functioyis and
f2 are strongly modified, particularly in the region of
low frequenciesw < wp, as is shown in Fig. 3. In
this region, determined by the damping consjarthe
filling fraction and the period length, the functionis
and f> change from oscillatory and tend to the limit

parametety.

limits differ from those presented in Ref. [5] where
the real part satisfiegi(w — 0) < 1. Consequently
our solutions do not coincide with the results shown
in such article. As we shall see, a careful analytical
and numerical treatment of Eq. (1) leads to complex
solutions whose frequency structutees not present

values one and zero, respectively. (The values of this band gaps, as was reported in Ref. [5].) Another
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small real wave vector arises with an odd behavior
in the region of low frequencies and the imaginary
component deforms pemating with finite amplitude

into the region of the first allowed band. Thus, the
first allowed band no longer represents pure modes of
propagation at least at the lower edge where the modes
are now attenuated. In the second and third gaps only
a tiny real wave vector appears while the imaginary
component remains practically unchanged.

With higher y the band structure undergoes a
strong deformation as is shown in Fig. 5 where we pre-
sent the bands far = {0.01, 0.1}wp. With y = 0.1wp,
the curve of real vectors backbends. This type of effect
is well known in physics of surface plasmons [15].
Of course that the bands of Fig. 3 do not stem from
the coupling of surface plasmons (we are considering
propagation only on the direction of periodicity).
However, the modes at frequencies below the plasma
frequency have fields that decay exponentially inside
each metallic layer, the similar requirement for the
occurrence of surface plasmons. The backbending
effect, that appears already fpr= 0.001wy, results
from the boundary conditions that the fields satisfy
Fig. 4. The photonic band structure. (a) The system is constituted ateach mte.‘rface dielectric-metal at freque_nmes below
by alternated air and dispersiveonabsorbent layers, the latter of ~ ©p- Some time ago several authors have discussed the
dielectric functione () = 1 — w3/w?. (b) The same as (a) butnow  iNvolved physics for single interfaces [16]. However,
the dispersive layers include small absorption effects. The metallic additional study is now required in order to determine
filling fraction is f = 0.1 and the cell size ig =100 nm. the role played by the periodicity.

Fig. 5 shows that ag is increased the backbending
particularity is that the curves ¢f for different values tends to disappear. Note the reader that the frequencies
of y cross just at the frequencies andw, the upper of the upper band edges fpr= 0 (see Fig. 4) remain
edges of the first and second bands. In the crossesas the reflection points of the dispersion curves at the
f1 = =£1. A similar behavior occurs to the curves of limit of the Brillouin zone whery # 0. The existence
f2, but at the cross pointg, = 0. It means that at  of these fixed points was ralady predicted from the
these particular frequencies; andw, the dispersion analysis of the functiong; and f> above.
relationsw (K) of the waves in the superlattice, either Figs. 4 and 5 show that absorption breaks the con-
with or without absorption, coincide. cept of band structure (as a series of allowed and

Now we present the numerical solutions of Eq. (2). forbidden frequency regions). However, some prop-
Fig. 4 shows the effect of dissipation on the band erties of the electromagnetic waves in a semiinfinite
structure. Withy = 0 (see Fig. 4a) the curves have the superlattice can be established from the complex so-
expected form. As the frequency increases the Bloch lutions. In the region of the originaly = 0) lowest
vector that defines the modes changes from complex togap, 0< w/wp < 0.29, we found that the Bloch vec-
real and from real to complex, and so on. The highest tor develops a real componekik. We also see that as
imaginary vector in each gacoincides with the highery lower the imaginary componefj (seek at
corresponding mid-frequency gap except in the lowest the mid frequency of the gap). Thus, in a semiinfinite
gap. Fig. 4b shows that the small perturbatior= sample the waves penetrate more (beyond they pene-
0.001wp already produces a tioeable modification  trate in absence of losses) presenting an additional os-
of the structure at low frequencies. In the first gap a cillatory behavior introduced bk that tends to break
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Fig. 5. The complex bands as functionjaf Strong deformation of the curves is obsetwveainly in the regimef lower frequencies.

the standing wave conditions of the original gap. Low the fields are localized at the metallic films giving rise
metallic absorption only perturbs the standing waves; to considerable absorption.
a perturbed gap remains—no oscillatory waves are ex- We may give similar description of the complex
pected to traverse thick enough finite samples. bands in regions corresponding to upper forbidden and
Contrarily, in the region of the first original allowed allowed original bands. Our conclusions are, on the
band 029 < w/wp < 0.62, the conditions for complete  one hand, the metallic absorption affects the standing
propagation in absence of losses is now perturbed. Inwave conditions in the band gaps increasing the wave
a semiinfinite sample the oscillatory waves penetrate penetration of an incident wave (the bands develop a
but now due to the presence of absorption they acquire real vector component). For a semiinfinite superlattice
an exponential envelop that decays into the sample. (or a thick enough superlattice slab) this additional
The shorter penetration distanéddistance at which  penetration produces fié evanescence due to the
an incident wave decay tgd of its value at a surface), metallic losses (as higher the penetration, higher the
the higher imaginarnk,. Fig. 5 shows that the upper probability of absorption of the incident wave). On
band edge is less sensitive to the metallic losses. In factthe other hand, as is expected, the metallic absorption
the original upper band edge (with=0) at the zone  adds a decaying behavior to the original oscillatory
border preserves. Similar effect has been also reportedsolutions. In this case the interesting point is the
for 2D systems and have to do with the behavior of asymmetry of the penetration distant;eshort at low
the standing waves near the gap borders. From thefrequencies, long at high frequencies, in the same
band structure we conclude that in the upper edge allowed band.
of the first band the fields are mostly localized at Next we present the optical response of a finite
the dielectric region (the effect of the absorption is multilayer. The sample, of material parameters the
almost negligible). At the lower band edge, however, same of the superlattice treated above, is constituted
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Fig. 6. R, T and A spectra corresponding to a fimteltilayer of 11 cells. These functions satisfitRl + A = 1. The shaded regions represent
allowed bands of the nonabsorbent systefas@ption is higher at the lower band edges.

by 11 cells (22 layers) and the incident and the R and T indicate that T is more sensitive to the super-
transmitted media are air. This is a thick enough lattice absorption, which is higher at the lower band

sample for which the reflectio(R), transmission(T) edge (see Fig. 6). Note that peaks of A coincide with

and the multilayer absorptiofA) of the normally the peaks of T.

incident wave are expectéalbe in agreement with the On the other hand, the second gap seems almost
complex photonic bands. The ordinary transfer matrix the same of the nonabsorbent case, only with an
methods were employed in these calculations. small increasing absorption. In the third gap R and

Small loss in the metallic layers distorts the well- T show already the effects of finite structure with an
known R, T and A spectra of a nhonabsorbent multi- additional small absorption. Fig. 6 also shows that
layer (not shown here). With = 0.01w; Fig. 6 shows the superlattice absorption is strongly reduced in the
that the first gap remains for T even whenRL. Fi- second and third allowed bands.
nite absorption appears increasing as the frequency ap- The results presented in Fig. 6 are in complete
proaches to the first band. Note that the three func- correspondence with the complex bands of Fig. 4b.
tions R, T and A do not oscillate in this region. The A small real wave vector component in the gaps
waves are stationary with some degree of perturba- perturbs the standing wave conditions giving rise
tion that causes wave absorption. The high absorptionto finite absorption; then, a small imaginary wave
at the gap edge is in agreent with the large imag-  vector component in the allowed bands means the
inary vector component observed in the band struc- waves decay by absorption. It is very important to
ture. remark that the spectra shown in Fig. 6 represent a

Then, inside the first allowed band we observe ordi- small modification of the spectra corresponding to the
nary Fabry—Perot oscillations (the main characteristic nonabsorbent structure. For the wave transmittance the
of oscillatory modes in finite systems). The reflectivity band gaps are essentially unaltered.
appears symmetric with respect to the band edges but, Now we refer to Fig. 7. As can be seen with
contrarily, the transmittance is low at the lower band y = 0.1wp the R, T and A spectra are strongly
edge and high at the higher band edge. The profiles of perturbed, particularly in the regiow < wp. The



D. Soto-Puebla et al. / Physics Letters A 326 (2004) 273-280 279

Yo,=0.1
1.0 T T 1.0

¢

"

Vv

P
P

Fig. 7. The same as Fig. 6 but realistic the metallic absorption. The slope variation of A in the first gap reflects the backbending structure of the
bands. Fabry—Perot oscillations (transmission) begin at a fregueside the first gap. The first transmission gap is enlarged.

backbending effect of the bands gives to R and A Fig. 7). However at the lower edge/wp = 0.29),
variable slope inside the first gap. We also observe K| = 4.7 x 103 nm~! and exg— K| D) ~ exp(—5). It
an enlarge of the lowest transmission gap. Note that correspondsto a very low transmission not appreciable
transmission begins at a frequency inside the original in the scale of Fig. 7.
allowed band almost coinciding with the absorption Now we make some final remarks. In treating
maximum. At such a frequency AR) modifies its the problem of absorption in 2D and 3D photonic
behavior from monotonically increasing (decreasing) crystals with metallic components previous reports
to an oscillatory one—the Fabry—Perot oscillations. have speculated about new states inside the band
As higher the metallic absorption we found that gaps [9]. From our calculations we concluded that no
transmission begins at higher frequencies. similar states appear in 1D systems. We have found
In spite of the T asymmetry in the allowed bands, that inside the gaps the waves may penetrate more
Fig. 7 shows that realistic metallic absorption leaves in presence of absorption but not as an eigenstate of
the structures of R and T with some remnant of propagation (there exists an imaginary Bloch vector
the original (without absorption) band structure. The component that makes the wave evanescent). On
frequencies at which the second and third gaps beginthe other hand, the complex band structure here
are practically unaltered. reported leaves diffuse the lower edge of the frequency
We know that R, T and A depend on the thickness regions of mainly oscillatory solutions. However, the
D of the superlattice slab. With help of the complex upper edge, the point of maximum oscillation, is
bands one may estimat® in order to obtain a  clearly established at the border of the Brillouin
desirable transmission. For example, at the center of zone. At such points, the imaginary component of
the first band(w/wp = 0.45) with y = 0.lwp we the wave vector is minimum; the waves propagate
found from Fig. 5 thatk; = 9.7 x 10~* nm~1. Thus, almost without damping. Thus, the complex bands
for our sample of eleven cells at such frequency we allows one to know the frequency regions at which
have exjy— K| D) ~ exp(—1). It means thaD ~ § and the higher transmission is expected through finite
transmittance is expected (as effectively it occurs. See samples.
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It is important to say that previous reports of calcu- at frequencies of the nonalrbent multilayer gaps.
lations in the scheme of complex frequency and real The higher penetration is accompanied of higher ab-
wave vector have found considerable enlarge of some sorption. The complex bands define clearly the fre-
photonic gaps due to the presence of absorption [4]. quency regions where highest transmission through a
Now, within the scheme of complex wave vector and finite sample is expected.
real frequency, we cannot speak of an absolute en-
large of the band gaps. As Fig. 7 shows, apparently
the first band gap for T enlarges and the gap edge pen-Acknowledgements
etrates into the region of the first allowed band. How-
ever, this is a relative result because the frequency at  This work was supported by Consejo Nacional de
which appreciable transmission begins depends on theCiencia y Tecnologia, CONACyYT México, Grant No.
number of cells in the sample. As thicker the sam- 489100-5-3554-E. D.S.P. is grateful to CONACyYT
ple, higher the frequency of threshold for transmit- and PROMEP (Programa de Mejoramiento del Profe-

tance. For example, with a multilayer of eleven cells fi- sorado de la Secretaria ddi€acion Publica, México)
nite transmission exist only at frequencies higher than for support.

w ~ 0.40wp; with twenty cells this frequency moves
to w ~ 0.50wp and, for forty cells transmission begins
at w ~ 0.5%vyp. It means that for the sample of forty
cells the lowest gap is defined by Owywp < 0.59
while for the sample of eleven cells it has the frequen-
cies O< w/wp < 0.40. Thus, with respect to a nonab-
sorbent multilayer, the lowest gap for T is enlarged by
the absorption in finite systems. All of this behavior
can be inferred from the complex band structure.

We want to remark that the metallic losses make
complex the Bloch wave vector. It means that the
correct description of the wave propagation is given by
the two wave vector components, real and imaginary.
One cannot speak ofraal band structure = w(KR).

For this reason we believe that the band structure
reported by other authors, particularly in Ref. [5], need
be reconsidered.

In conclusion, we have presented the complex

bands that describe the electromagnetic wave prop-

agation in dielectric—metallic superlattices. The loss
mechanisms in the metallic layers modify the well-
known structure of allowed and forbidden frequency
ranges of the correspondimpnabsorbentultilayer.
Due to the presence of a fie imaginary Bloch vector
component our solutions have physical sense only for
finite systems. We found th#te metallic absorption
perturbs the conditions for stationary waves allowing
higher penetration (shorter imaginaky) of the waves
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