8BZI} SOLID BOUNDED BY TWO PARALLEL PLANES 93

Finally, consider a composite wall as before, but with eontact resist-
ances bebween the layers such that the flux of heat between the surfaces
of consecutive layers is H times the temperature differencs between
thess surfaces (cf. 1.9 (20)). Here 1/H may be regarded as th» therma:
resistanics of the contact, and the total thermal resistance of the compe-
site wall will be the sum of the thermel resistances of the separate iayers
plus the sum of the thermal resistancss of the contacts between them.

If the conductivity K is & function of the temperature, the differential

equation is d /. dn
| H =] = 0.
d:?.')( dx )
Thus the relation  —K g-? = f, constant,
x

still holds. Integrating between the surface temperatures v; and v, of
a siab of thickness I we have

— | K dv =1,

2

L%
and thus f= W——-—-—?—L&Y, (4)
[
1
where K, = [ & v (5)
Z’z"‘“"vi J
vy

is the average conductivity over the temperature range in the slab.
Thus, if conductivity is a function of temperature, the previous results
hold good with X, in place of K.

3.3. The region 0 <x <<i. Ends kept at zero temperature.
Izitial temperature f(x}
The differential equation to be solved is

oy 0%

-‘a—g-—"'-.'cé%-z-, 0< <l : (;
with =0, whenz=0andx =1 (2}
and v = f(x), when {=C. (3)
If the initial distribution were
V= Ansinzz—flﬁ,
it is clear that v == Ansin?%fe*'m”"’m’

would satisfy all the conditicns (1), (2), (3) of the problem.



94 LINEAR FLOW OF IHEAT IN THE [Chap. I11

Let us suppose that the initial temperature, f(x), is a bounded function
satisfying Dirichlet’s conditionst (#.S., § 93) in the interval (0,1) so that
it can be expanded in the sine series

e

. N
a, sin 5

n=1
where a, = -?— f f(x’)sinﬁfl—"i dx’. (4)
0
Now consider the function v defined by the infinite series
< . NTx 2y
v = 2 ansm—%—e“"" ", (8)
n=

This series, owing to the presence of the convergency factor
exp[ — («xn2n?/1%)], is uniformly convergenti for any interval of x, when
¢ > 0; and, regarded as a function of £, it is uniformly convergent when
t =>t, > 0, t, being any positive number.

Thus the function v, defined by the series (5), is a continuous function
of z, and a continuous funection of ¢, in these intervals.§

Itis easy to show that the series obtained by term-by-term differentia-
tion of (5) with respect to « and ¢ are also uniformly convergent in these
intervals of 2 and ¢ respectively. Thus they are equal to the differential
coeflicients of the function v.

o = ren2ar? na -
Hence = e S 2T g gin o g—kntutyl
ot Bt l
v - kndn? . nmx -
and K—-—é — z """‘:5“"“,18111 e—Kkntn f ,
ox i l

whent > 0,and 0 < 2z < 1.

1 This restriction is removed in C.H. § 31 where it is shown that the results below hold
if f(z) is bounded and integrable in 0 << = < I.

1 Since f(x) is bounded there is a positive number M such that |f(z)] < M in
0 < z < l. It follows that |a,| < 2M for all values of n. Therefore

a, sinrlr—z ek dMe—rntwiolld where > t, > O.

Lo
Now the series 3 emrnimitellR
n=1
is convergent and its terms are independent of both # and ¢, and the results follow.
§ Regarded as a function of the two variables «, ¢, it is a continuous funétion of (z, ?)
intheregions 0 < 2 I, t > ¢, > 0. (Cf. F.8., § 37.)
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ov %y

Thus the equation % = X omE

is satisfied at all points of the rod, when ¢ > 0, by the function defined
by (5).

We have now to see whether this function also satisfies the boundary
and initial conditions. '

Since the series is uniformly convergent with respect to z in the
interval 0 < x < I, when ¢ > 0, it represents a continuous function of
x in this interval.

Thus

iiﬁx:v = the value of the sum of the series when z = 0
=0,

and lim » = the value of the sum of the series when = {
x>l

= 0.

Hence the boundary conditions are satisfied.

With regard to the snitial conditions, we may use the extension of
Abel’s theorem contained in F.8., § 73, 1.

We have assumed that f(x) is bounded and satisfies Dirichlet’s con-
ditions in (0, 7).

Therefore the sine series for f(x),

alsinz;—:-{—azsing%f-k...,
converges, and its sum is f(z) at every point between 0 and ! where f(x)
is continuous, and }{f(z-+0)-+f(x—0)} at all other points.t (Cf. F.8.,
§ 98.)
It follows from the extension of Abel’s theorem referred to above
that when v is defined by (5), we have

@

limoy = lim ansin?-m—xe-""’””‘”’
t—0 -0 & b
= f(z) at a point of continuity
= }{f(x+0)+f(x—0)} at all other points.

Thus we have shown that if the initial temperature satisfies Dirichlet’s

+ If f(z) is bounded and satisfies Dirichlet’s conditions, it follows from F.S., § 93,
that it can only have ordinary discontinuities.
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conditions, and is continuous from x == 0 to z == I, while f(0) == fil) = 0,
the function defined by (5)1 satisfies all the cox;dltlons of the problem,
If the initial temperature has disconvinuities, the function defined
by (5) at these points tends to 3{f(x-+0)+f(x—0)} as ¢ - 0. Xf¢is taken
smail encugh, » will bridge the gap from f(x—0) to f(z--0), and the
temperature curve will pass close the point ¥{f(x-+0)+f(x—0)}.

Tt must be remembered that the physical problem, as we have stated
it for discontinuity, either at the ends of the rod or in the rod itself,
is anideal one. In nature there carmob be a discontinuity in the tempera-
ture in the rod initially. In the physical problem we must assume that
a sudden change of temperature takes place at the instant from which
our cbservations are measured, in the immediate neighbourhcod of the
point of discontinuity or the ends, if they are points of discontinuity.
The gap in the temperature is thus smoothed over. The solution of the
mathematical problem we have obtained satisfies these con ditions, and
it may be taken as representing the physical problem in this ruodified
aspect.

The following special cases of (5) are of interest:}
(i} Constant initial t&mpemture flx) == ¥, constant.

4’Vo ) « (2n+1)m2
. e pKERF RIS gy VT VTR 8)
¢ @n1)° e o
na
(i1) A linear inital distribution f(x) == kx.
2&7{: Z (""1)”" -xn"”f"/l"%in--l—— (7)

a1

In general, it is a littie more satisfactory to set out results for the synunetrical
case of the slab —! < o < [ so that diveet comparison with similar results for the
sphoere and cylinder is possible. Aiso, it is invariably found that series such as
(6) and (7) converge slowly for small values of «t/i?, say «t/lI* < 0-C1, but it will
appear later (cf. § 12.5) that alternative series involving error functions or their
integeals are rapidly convergent for such values. For convenience these alternative
series will be given. nere, cf. (9), (11), their derivation will be discussed in § 12.5.
All the results given below hold, of course, also for the slab 0 < x < {, with no
flow of heat at * = 0, and z = I at zerc temperature.

+ This can be written as

5 S 2
v== ff(x’) Z (sinn"m
0 1

since the series under the integral is vniformly convergent. (1.8, § 70.)
t Series such as (8) can also he expressed in terms of theta functions, ¢f. Whitlaker
ant Watson, Moderrn Analysis (Cambridge, edn. 3, 1920) Chap. XXI.

Yir'H p m’w’t/lﬂ) dx’,
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Gy The slab —1 < x < 1 with constant nidtal temperature Vo
Changing the origin ir. (8) to the mid-point of the slab andi replacing 4l by I gives

[eo]
m% -\: {_.._1)7’ —K(2n+1)21ﬁt/413 Mx (33
-~ 2n—1~1) 2l '
n=0
2
v . (2n+- l)l x, (2n+ 1)+ 2] .
=V, I{,Z}( iy {erfc ETP t)* erfc —-»—-—-—»——»0( o } (9]
==

o numetical vesults for this problem are given in Figs. 10 (a) and 11.

Sox
'“'he average temperature vay in the slab at time ¢ is

o
815 1
Vgy = ;r-é(-’ Z (é:n,.{_ 1)2 6—K(2n+1)2ﬂat1d= (10)
n=0
= V—2 (Zg) [ ~t4-2 z (*l)nmrfc( t)i} (11}
=1

The quentity of heat per unit area of the slab at time ¢ is just 2lpcvsy. Measur
ments of this quantity are frequently used to determine diffusivities or diffusion
coefficients. t

The flux of heat f at the surface is

0
f=n
sz — a3kl
( t)*{ +2 z( 1)”6 /)l }, (13)

Tugersoll and Koeppl have used this solution for the determination of x for
parily moterials; also Frazier§ has used it for metal rods by observing the differ-
ence in temperature between the points # = a and z = b of the rod. He chooses

a and & so that cos(3ma/2l) = cos(3mb/21).

Tn this case the second term of the series derived from (8) for the temperature
difference vanishes, and the third term which has exp[ - 26k7r®/4*] 2s a factor dis-
appears very rapidly.

(iv) The region —1 < x < L with initial temperature Vo(l— |2])/t and zero surface
temperoiure.

- :
R /AN 1 2n+-Lynx R 14
""‘“"Z(2n+1\2“’8 2 e
n=0
20
Vyl—|=)) 21/{,(::1‘.)&2 _ n{. onl4-|z| ... (Cn4+2)-—-jxl} o,
= 7 - 0( 1)myierfe 3()} ierfe St} }} (15)
”B

+ Anderson and Saddington, .J. Chem. Soc. (1849) 381-6.
{ Phys. Bev. (2) 24 (1924) 92.
§ Phys. Rev. (2) 39 (1932) 515.

6U51 H
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(v) The region —1l < @ < | with initial temperature Vo(I3—x3)fI* and zero surface
temperature.
a0
= 32% (=1 e—rxien+1)2uS4l8 o (2'n_ +._ L) (16)
< @nt I 2l
O(ZL—w”) 2K SxtVo z @ent+1)l—2z . 2rn+1N42
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Fra. 10: Temperatures in the slab 0 < =z < ! with no flow at # = 0, zero tem-

perature at z ==, and various initial distributions of temperature. The

numbers on the curves are the values of «#/l*. (a) Constant initial temperature ;

(b) linear initial temperaturs, § 3.3 (iv); (¢) ‘linear+constant’ initial tempera-
ture ; {d) parabolic initial temperature, § 3.3 (v)
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(vi) Theregion —1 < m < l with initial temperature V, cos(nx/2l) and zero surface
temperature. o
v = Vcos 5y ekritjan (18)

These results are interesting since they give a qualitative idea of the way in
which heat is extracted from a& slab with a given initial distribution of tempera-
ture, It appears from (5) that the higher harmories in the Fourier series for f(x)
disappear first, leaving the fundamental whose amplitude diminishes exponenti-
ally. Thisis, in effect, restated in (18). In Fig. 10 (a)-(d) the decay of temperature
for foar different initial distributions of temperature is shown, viz. constant,
linear, ‘linear 4-constant’, and parabolic. It appears that heat is removed in such
a way as to make the distribution approximate to a cosine: for a constant distribu-
tion heat is taken first from near the surface; for a linear distribution from near
the centre; for a ‘linear-constant’ distribution from both centre and surface.

3.4. The region 0 < z < I. Initial temperature f(x). The ends at
constant temperature or insulated

In the case in whizh the ends are kept at constant temperatures v,
and v, we have the equations

o v

v =v,, whenz =0,
v=1v, whenz=1_,
and v = f(x), whent = 0.

Asin§ 1.14, we reduce this to a case of steady temperature, and a case
where the ends are kept at zero temperature.

Put = u-+w,
where u and w satisfy the following equations:

d*u
da?

% = v,, whenz =0,

% = v,, When x =1,

ow *w

w=10, whenz=0andx =1,

and

w = f(x)—u, whent=20.

We find at once that
u = v+ (v9—vy)2fl,

4



