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1. Introduction

Heat reduction by thermal wave crystals Traditional Fourier conduction law with implicit assumption of

A-Li Chen**, Zheng-Yang Li *", Tian-Xue Ma*®, Xiao-Shuang Li?, Yue-Sheng Wang®* instantaneous thermal propagation is no longer applicable under
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* Department of Civil Engineering, University of Siegen, D-57068 Siegen, Germany biDngiCﬂl tissues, In 1958, Cattaneo | 1 ] and Vernotte |2] SEpﬂrﬂtEIF
proposed a model with a time lag between the heat flux vector and

the temperature gradient. In the one-dimensional (1D) case, the
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where g and T are heat flux and temperature, respectively; 1, is the
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2. Problem formulation

Consider a pericdically layered structure with bilayver unit-cells
as shown in Fig. 1. Each unit-cell consists of layer (sub-cell) & with
thickness [, and layver B with thickness [, (the unit-cell’s thickness
I'=14+ [g). All material properties (K, T, @ Cp. Co } Of the two lay-
ers are distinguished by subscripts A and B. The coordinate (x, v is
shown in the figure. We number an arbitrary unit-cell as the jth
unit-cell. Its left and right boundaries coordinates are x| = ji and
#y = (j + 1)l respectively; and the coordinate of the interface
between layers A and B is x5, = jl + la.

A 1D thermal wawve propagates in the periedic structure without
any internal heat source or loss (ie. Q=0 For a time-harmonic
thermal wawve with angular frequency o, the temperature and heat
flux fields may be written as [Tix £, gix. )} = {]'T[.x]. gix) e =
with Ti(x) satisfying
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where i = v~ 1. The general solution of equation (4) is

Tix) = A @™ 4 Age ™™, (5]
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Flg. 1. Schematic diagram of a 10 thermal wave crystal.

where A; and A, are unknown coefficients, and
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of which the real part demonstrates propagating of the thermal

wave and the imaginary part characterizes the attenuation The

heat flux gix) is obtained by following Eq. (2],
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qix) = —Aig e, (7)

For conciseness, the following state vector is introd uced,

Six) = {T(x). q[x]}' = Mix){A;, A; )}, (8]

where the superscript T denotes the transpose, and
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where 1is the identity matrix. Considering the detailed expression
of each element of the transfer matrix Mrancs,, one can obtain the
following concise form of the eigemvalue equation |45]:
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Hg 2. Complex dispersion cunves (with (a) for the real part and (b) for the imaginany part] for the the mal wave propagating imthe 10 thermal wave crystal, the nomualized
wave numvber is k < k,_ + ik, = kI = () derivative of the imaginary part of the normalized wave number shown in(b), the maxima and minima of the derivative determines

the lower and upperedges of the band gaps; (d) the temperature responses S calculated by the FOTD method for the thermal wave crystal of finite thickness (the black solid
curve |, homoegeneous bulk material A (the red dashed curve)and bulk material B (the blue dotied curvel, respectively. (For imterpretation of the references to color in this

figure legend, the reader is referred to the web version of this article.)
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In this paper, we present an extension of the plane-wave method (PWM) to compute the complex band structure of thermal wave crystals
(TWCs). The structural periodicity of TWC allows the possibility to manipulate non-Fourier heat via wave interference. While the Cattaneo-
Vernotte (CV) heat conduction theory accurately models oscillatory wave-like propagation of heat in TWCs, obtaining an eigenvalue equation
for frequency using the CV wave equation is not possible. To overcome this limitation, we propose a novel approach that solves a complex
eigenvalue equation for the Bloch wave vectors.



2. Method

The CV model proposes a modification of Fourier’s law of
thermal conduction by introducing a time lag between the
heat flux vector and the temperature gradient [24,25]. In the
case of a one-dimensional periodic structure, the heat con-
duction model is

0 0
g(x,t) +r{u:}aq(u:,ﬂ = _H(;;;}ET(:;;,H, (1)

where ¢(x,t) and T'(x,t) are the time-dependent heat flux
and temperature, respectively. There are two position-
dependent material parameters, 7(x) and #(x) that are the
relaxation time and thermal conductivity, respectively. The
conservation of energy in the absence of heat sources is given
by the equation

2 g(at) = —p@ep (@) o T, t), @
where p(r) and ¢, () are the position-dependent mass den-
sity and specific hea[ at constant pressure, respectively. By
combining Eqgs. (1) and (2) we obtain a wave equation in the
time-domain as
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we obtain a wave equation in the frequency domain
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The conventional approach of formulating an eigenvalue
problem to obtain the frequency as a function of the Bloch
wave vector [w( /)] is no longer applicable to Eq. (5). In this
paper, we propose a method to solve the eigenvalue problem
that results from the implementation of the PWM where the
Bloch wave vectors k(w) are the eigenvalues.
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Eq. (3) may be wrillen as

nir)V <V X Eir) + {Mir)Eir) = [w,.-’.:'}lEI:r}_ (4)

> [(G -Gk + G +
i

QUG — GE(G) = (w/cFE(G). (5)

elw) = gull — mi;’ml}-

200 K 260°K 260 33n

[
@

i -
s & & 8 B B

Frequency  (10'%s™)
g

075 [

050 |

025 [

0.0




PHYSICAL REVIEW B 72, 033336 (2005)

Temperature tuning of two-dimensional photonic crystals in the presence of phonons
and a plasma of electrons and holes

J. Manzanares-Martinez and F. Ramos-Mendieta
Centro de Investigacidn en Fisica de la Universidad de Sonora, Apartado Postal 5-088, Hermosillo, Sonora 83190, Mexico

P. Halevi
Instituto Nacional de Astrofisica, Optica v Electronica, Apartado Postal 51, Puebla, Puebla 72000, Mexico

(Received 11 January 2005; published 18 July 2005)

elw) = gll — wifwzl.

VYV ®E= wlclewkE

2 2 2 2
CLIL_LLJT ] l‘.UF
E{w}:su(|+ - — - — )

wi—w —iny olo+it,) olo+is)

(2)

) 1 J
dx | p(x)ep(x) Ox

q(x,w)

1 x
= —iw——rq(z,w) — wzmq(;c,w).

k(x) k(x)

1.00
0.75 4
0.50
0.25 4

0.00

Transmittance

1.00 4
0.75 4
0.50 -
0.25 4
0.00

Traesmastance

=

1.00

F0.75
0.50
025
+10.00

0.0

L

784

A -

3254

Eim

Frequency (1 0" s"]

30

Ll m

9.3

[4] ?_‘.

[ kmas

375 4
35

333 4

300

ol

LI |
Froquoncy e (10 57




r} { 1 d o }}
T, W
() ep(a ) oz Y [K*Ag.¢r + kB + Coer] Qar =0,
R |

where the matrix elements are

Ag,gr = ag_cr,
1 z(:r
— Z ] & B o (_' (_”-
(r)ep () = g =ag_c(G+G),
1 Z 3G Coc = GGag_¢ — iwfe_ar — w*Yo_c-
— 2 e
w(x) s

(K*A+ KB+ C)Q =0,

7{%) iGe 3 3
2R (6 1) kel =% (7 ) lia)

J" UJ} Z('d] Ft{(:-l—f(

Rev. Mex. Fis. 70 031601



f (Hz)

q- a A P = .
o4 05 00 01 0.2 03 04 05

a)  KdR2n o) Kd/2m

0 =
0.0 01

FIGURE 1. Complex band structure of a 1D-TWC, composed of
alternating layers of dermis and stratum with equal layer widths
and a period of d = 20 pm. The solid curves represent the results
obtained using the PWM, and the open circles correspond to the
TMM calculations. a) The real part of the wave vector is displayed
in blue, and b) the imaginary wave vector is displayed in red in
panel. We used 101 plane waves for the PWM in this calculation.
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FIGURE 2. Complex band structure of a 1D-TWC, composed of
alternating layers of Si and Ge with equal layer widths and a pe-
riod of d = 2 nm. The solid curves represent the results obtained
using the PWM, while the open circles correspond to the TMM
calculations. a) The real wave vector is displayed in blue, b) while
the imaginary wave vector is displayed in red. We used 101 plane
waves for the PWM in this calculation.
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(b)

Fig. 1. (a) Square unit cell ofside 1. The square cylinder at the center hasa
side 4. The dark gray zone at the center corresponds to material & and the
surrounding area corresponds ts material b, (b) Infinite lattice constructed
by the repetition of the unit cell.



2. Theory

The CV heat conduction model proposes a modification of
Fourier's law by introducing a time lag into the heat flux vector,
in the form [&, 7]

glx. 1+ 7ix)] = —#(x)VT(x.1). i1y

where Tix.f), qix.f. x(x) and 7ix) are the position-
dependent temperature, flux vector, thermal conductivity, and
time-lag respectively. We expand the left-hand side of Equation
[ 1y using the Taylor series. retaining only the first two terms to
have

qix. 1)+ rfx]gqfx, = —rix)VT(x.1). (2%

The equation of energy conservation in the absence of inter-
nal energy sources is given by

il
V- qx.0) = —p(x)e(x) =T (x.1), (3)
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Combining Egs. (11) and (12) we obtain

V- x)VTix w) = @ ) T(x, ) i13)
where we have defined

= K(X)
a(x).= fewr(x) — 1 L
and
Bix) = pix)cix) (15)
(X)) = Zu{;e‘ﬁ"‘ 2%
G
,Bf."} = Z’B{,‘f'ﬁ'x {'21.'}
G

panaea in [erms of Prane waves i e ronm
kG
Tix.w)= E T e (30
G

where k is a wave vector in the first Brillouin zone. Substitu-
tion of Eqgs. (22).023) and (30) in Eq. (13) vields
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2.1 T —= X direction

In this direction, the wave vector only has a component in the
x-direction, k = (k. (). In this case, it is possible to write the
Eq. (31) as

Z [Eﬁ{;-{;- + kB + E{;_{,-,I T =10 (32)
LF

where we have introduced

Ag g = g, (33)
Bo o = oo (G, + G, (34)

and
Coo = oG -G + iwflc ¢ (35)

The Eq. (32) defines a set of equations that give a matrix
equation in the form

[k_3A+I:_TB +CiT =10 (36)

The vector T has as n coeflicients Tg; of the Fourier expan-

sion T'(x.w) defined in Eq. (30). Here A, B and C are matrices

with n % n elements given by Ag_g . B and Cg_g- defined
by Eqs. (33-35).

We reformulate the Eq. (32) as a complex eigenvalue prob-
lemin the form

F et R ey B

2.2. T — M direction

In this case, the wave vector is in the I' — M direction. The
wave vector is k = (k,. &, ). but in this case the &, component is
equal to k.. &, = k.. For this direction, we proceed similarly to
the previous direction I' — X, Starting with Eq. (31) we obtain
a set of equations that can be written in the same manner as Eq.
(32). The difference is that in this case. the matrix elements are
defined by the relations

AG-6r = QG- (38)
1
B{;_(; = ;{!{,‘._{; (GT + G:. + G}. + G:} f%‘;}
1 < e, L
Co-t = ;ﬂ'{;-{;-{r -GN+ ;Fhﬁ{;-{;- (40)

2.3 X — Mdirection
In this case, the wave vector is k = (0, ) because is parallel
to the v axis. In this case. we start with Eqg. (31) and we obtain
an eigenvalue equation for k, in the form
EA+EB+CT =0, (41)

where the elements of the matrices A, B and C are given by

AG-6 = HG- (42)
1 r
Bg i = ERi e Gy +G) (43)

2

r irr r irr - -
G.G +Erc_v+c_r+(5) +iwfeg (M)

Cor = rg-i

The Eq. (41) can be written as an eigenvalue problem as the

form
C BT 0 -A\[T
(ﬂ [”@Tlﬂﬁ([ n]lx-,.Tl (45)



200 7—wss ——e
i am * 'l't‘l':'-.
154 '“"‘“-..

— 1501 et

i

r X

25 L
0
M

Fig. 1. The complex band structure for thermal waves of a 2D TWC com-
posed of an arrangement of square bars in a square lattice. The bars are
compased of materials @ and the surrounding background has material b,
The filling fracton of material @ in the unit cell is f = 0.7 We observe a
complete band gap with red color
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tieulated as
Vol VTix,w) = i x)Tix,
] —1.16;‘: R a i X) X, w) = o x)Tix, w)

where we have defined
where g symbalizes the heat flux vector, T signifies the temperature,

represents the lagging time between heat flux and temperature, % de- a(x) = K(X)
notes the gradient, x and ¢ are the thermal conductivity and the time, fwr(x) — |
respectively. The energy conservation can be expressed by: and

ar
V= -peo-+d (2)

Bix) = p(x)cix)
here @), p, and ¢ are the heat source or internal energy generation rate,

the mass density, and the specific heat, respectively. Substituting Eq. (2]

into Ec. (1), we have the following hy perbolic heat conduction equation

without heat source

Lar  &T

T, dr o -

LT (3
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